Frequency dispersion of small-amplitude capillary waves in viscous fluids.

نویسنده

  • Fabian Denner
چکیده

This work presents a detailed study of the dispersion of capillary waves with small amplitude in viscous fluids using an analytically derived solution to the initial value problem of a small-amplitude capillary wave as well as direct numerical simulation. A rational parametrization for the dispersion of capillary waves in the underdamped regime is proposed, including predictions for the wave number of critical damping based on a harmonic-oscillator model. The scaling resulting from this parametrization leads to a self-similar solution of the frequency dispersion of capillary waves that covers the entire underdamped regime, which allows an accurate evaluation of the frequency at a given wave number, irrespective of the fluid properties. This similarity also reveals characteristic features of capillary waves, for instance that critical damping occurs when the characteristic time scales of dispersive and dissipative mechanisms are balanced. In addition, the presented results suggest that the widely adopted hydrodynamic theory for damped capillary waves does not accurately predict the dispersion when viscous damping is significant, and an alternative definition of the damping rate, which provides consistent accuracy in the underdamped regime, is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amplitude equation and pattern selection in Faraday waves.

A nonlinear theory of pattern selection in parametric surface waves (Faraday waves) is presented that is not restricted to small viscous dissipation. By using a multiple scale asymptotic expansion near threshold, a standing wave amplitude equation is derived from the governing equations. The amplitude equation is of gradient form, and the coefficients of the associated Lyapunov function are com...

متن کامل

Direct measurement of the dispersion relation of capillary waves by laser interferometry

Surface waves on fluids with wavelengths in the millimeter range are known as capillary waves. Surface tension determines the propagation and dispersion of capillary waves while gravity plays a minor role. We describe a simple method for generating standing capillary waves of known frequency on water and introduce a novel noncontact technique based on laser interferometry to measure the wavelen...

متن کامل

Square patterns and quasipatterns in weakly damped Faraday waves.

Pattern formation in parametric surface waves is studied in the limit of weak viscous dissipation. A set of quasi-potential equations (QPEs) is introduced that admits a closed representation in terms of surface variables alone. A multiscale expansion of the QPEs reveals the importance of triad resonant interactions, and the saturating effect of the driving force leading to a gradient amplitude ...

متن کامل

Pressure corrections for potential flow analysis of capillary instability of two viscous fluids

Capillary instability of a liquid cylinder immersed in another liquid is analyzed based on potential flow solutions. The growth rate of the instability is obtained by considering the normal stress balance at the interface. We derive a viscous correction of the irrotational pressure which presumably arises from a boundary layer needed to resolve the discontinuity of the tangential velocity and s...

متن کامل

Viscous contributions to the pressure for potential flow analysis of capillary instability of two viscous fluids

Capillary instability of a liquid cylinder immersed in another liquid is analyzed using viscous potential flow. An effect of viscosity on the irrotational motion may be introduced by evaluating the viscous normal stress at the liquid-liquid interface on the irrotational motions. In a second approximation, the explicit effects of the discontinuity of the shear stress and tangential component of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E

دوره 94 2-1  شماره 

صفحات  -

تاریخ انتشار 2016